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Abstract

This illustrated review focuses on polyphosphate as a potent modulator of the plasma
clotting cascade, with possible roles in hemostasis, thrombosis, and inflammation.
Polyphosphates are highly anionic, linear polymers of inorganic phosphates that are
widespread throughout biology. Infectious microorganisms accumulate polyphos-
phates with widely varying polymer lengths (from a few phosphates to over a thou-
sand phosphates long), while activated human platelets secrete polyphosphate with
a very narrow size distribution (about 60-100 phosphates long). Work from our lab
and others has shown that long-chain polyphosphate is a potent trigger of clotting via
the contact pathway, while polyphosphate of the size secreted by platelets acceler-
ates factor V activation, blocks the anticoagulant activity of tissue factor pathway
inhibitor, promotes factor XI| activation by thrombin, and makes fibrin fibrils thicker
and more resistant to fibrinolysis. Polyphosphate also modulates inflammation by
triggering bradykinin release, inhibiting the complement system, and modulating en-
dothelial function. Polyphosphate and nucleic acids have similar physical properties
and both will trigger the contact pathway—although polyphosphate is orders of mag-
nitude more procoagulant than either DNA or RNA. Important caveats in these stud-
ies include observations that nucleic acids and polyphosphate may co-purify, and
that these preparations can be contaminated with highly procoagulant microparticles
if silica-based purification methods are employed. Polyphosphate has received atten-
tion as a possible therapeutic, with some recent studies exploring the use of polyphos-
phate in a variety of formulations to control bleeding. Other studies are investigating
treatments that block polyphosphate function as novel antithrombotics with the

possibility of reduced bleeding side effects.
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e Polyphosphate is present in microorganisms and human cells such as platelets.

e Polyphosphate modulates coagulation via interactions with multiple proteins.

e Polyphosphate modulates inflammation by triggering bradykinin release and inhibiting complement.

e Nucleic acids and polyphosphate co-purify and may be contaminated with silica-based methods.
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Where is polyP?

In microbes, polyP size is heterogeneous, ranging from a few phosphates to over a thousand phosphates in length.!

| have it too!

¥~ Proton pump

Platelet dense granules are similar in composition to acidocalcisomes and have
abundant polyP. Its polyP length is tightly regulated (60-100 phosphates long).*

Platelet
[eldjoeg

image courtesy of Roberto Docampo

PolyP is also reported in mast cells,’ prostasomes,® cardiac muscle,”® brain,” and nervous tissue."

How does it come in contact with blood?

Platelets, when activated, secrete all
their granule contents— including
polyP.*

Invisibility shields

PolyP may be released
following tissue damage
or cell necrosis.

We’'re free!

PolyP is very short (25mer)
in cardiac muscle,”®
slightly longer in platelets*
and mast cells® (60-

Some organisms

(such as Neisseria, a causative agent of 100mer). Some tissues,
meningitis) express polyP on their capsule such as brain,contain very
surface. It is a virulence factor that may allow | | 'ong polymers (800mer).

them to evade complement killing."" L

PolyP is widespread in infectious microorganisms and is released by activated platelets and mast cells. It may also be
released following tissue damage. In these settings, it may act as a pathogen-associated molecular pattern (PAMP) or a
damage-associated molecular pattern (DAMP) to help trigger host defenses.

**Republished with permission of American Soicety for Biochemistry and Molecular Biology, from Ruiz et al.;* permission conveyed through Copyright Clearance Center, Inc.
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Roles of polyP in coagulation & kinin generation

Contact Pathway
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PolyP is a contact activator

Long-chain (microbial) polyP triggers clotting by providing a
template for autoactivation and reciprocal activation of the
proteins in the contact pathway.'*"* The enzymes, FXlla and
kallikrein, are generated. Platelet-size polyP supports this
reaction poorly."

PolyP causes bradykinin release

Newly generated kallikrein cleaves high molecular weight
kininogen to release bradykinin, which is a potent vasodilator
and proinflammatory mediator.'

PolyP greatly accelerates FXI activation

FXI deficiency is associated with bleeding, indicating that FXI
activation plays a role in hemostasis."” While thrombin
activation of FXI is slow,'" platelet-size polyP enhances its
rate 3000-fold, making this back-activation reaction a
physiologically relevant contributor to sustained thrombin
generation.?**'

PolyP blocks TFPI activity

Tissue Factor Pathway Inhibitor (TFPI) antagonizes tissue
factor-dependent initiation of coagulation by inhibiting FXa
and FVlla. Platelet-size polyP potently abrogates TFPI's
anticoagulant function'#** and enhances the inactivation of
TFPI by FXla.®

PolyP accelerates thrombin generation

FV activation is a rate-limiting step in thrombin generation.
Because platelet-size polyP enhances the rate of FV
cleavage by FXla, FXa and thrombin, the kinetics of thrombin

generation are improved.?***

PolyP strengthens clots and delays lysis

PolyP is incorporated into fibrin, leading to thicker fibrin fibrils
that are more resistant to fibrinolysis."****°

PolyP accelerates blood clotting by targeting a few specific points in the clotting cascade, always in a procoagulant
manner. The exact steps modulated by polyP depend on its polymer length.
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Roles of polyP outside of coagulation

Although C1 esterase inhibitor (C1-
C1-INH INH) is a promiscuous serpin which

/ J_ can inhibit members of both the
FXlla

contact pathway (FXla, FXlla,
and kallikrein) and the
FXla" Kallikrein

complement cascade (C1s), polyP
only enhances the inhibitory effect
of C1-INH toward complement,?” not

C1lr.—» C1s toward clotting factors.

contact pathway

PolyP also destabilizes the C5b,6
complex, thereby reducing the
lytic capacity of the membrane
C4bC2a attack complex of the complement

(C3 convertase) \ system.”®

C5b,6 The overall effect of polyP is down-

C5b-9 / -\ regulation of the complement

po|yp system, which is opposite to the
effect it has on the clotting cascade.

Binding of polyP to receptors on the endothelial cell surface
polyP triggers downstream signal transduction. The result is loss of
endothelial barrier function and secretion of von Willebrand

factor (VWF) into the circulation.**°

complement cascade

(membrane attack complex) 28

VWEF secretion

endothelial cells

1

X |oss of barrier function

It's likely that additional roles of polyP in inflammation and vascular function are yet to be found.
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Comparison between DNA, RNA, and polyP
Nucleic acids and polyP have similar physical properties
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Helc they are linear molecules with regularly spaced, anionic phosphates.
Due to these similarities, polyP will often co-purify with nucleic acids.”
use alkaline phosphatase use Benzonase® to digest DNA & RNA
to remove polyP
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We're in this
together
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these polymers can shed silica particles. 5 HEK293 coll DNA

NET DNA

Clot Time (min)
N W

PolyP

N

— 0.1 1. 10 100
Polyanion (ug/mL)
°0° 0" But when you remove those confounders, polyP is orders of magnitude
Sl more active than DNA or RNA at activating the contact system.™

DNA released from immune cells is part of the inflammatory
response to infection.> NETosis is a component of
immunothrombosis.>*
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Necrosis also releases nucleic acids and polyP, bringing
them into contact with clotting proteins in plasma.*

Extracellular polyP, DNA, and RNA can be procoagulant and proinflammatory, but their contribution to these processes
requires much further investigation!
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PolyP as a possible therapeutic or target

To treat bleeding? PolyP has been covalently attached to particles or surfaces®**° and
encapsulated in liposomes*' for targeted delivery at the site of injury. It has also been attached to | —
matrices for direct application to wounds.*****
Because polyP
enhances fibrin
clot structure,
it could be used
to augment
treatment of
surgical bleeding
with fibrin glue.
Nanoparticles Synthetic Dense Granules Topical Agents \/
Ex vivo investigations of whole blood Adding polyP to blood in vitro reverses the anticoagulant effects of heparins
using microfluidics are helping define and DOACS (direct FXa or thrombin inhibitors). PolyP also mitigates the anti-
polyP’s contributions to hemostasis coagulant effects of vitamin K antagonists and enhances clotting in
and thrombosis under more realistic hemophilic plasma.*’
conditions.*”** These studies also test
potential polyP inhibitors.*54¢ Whole blood thromboelastometry showing the reversal of enoxaparin by polyP
60 +2.7 ug/mL enoxaparin + 100pM polyP
40
20 no additive
€ o +2.7 ug/mL enoxaparin
20
40
60
10 20 30 40
Time (min)

To treat or prevent thrombosis? Various compounds antagonize the procoagulant effects of polyP, both in vitro and in
vivo. Molecules that bind polyP via ionic interactions prevent its modulation of coagulation.*®*® Alternatively, polyP can
be enzymatically digested. /

HiCCHs

Binding group /"* gim UHRA
“"*\f\d 9 scaffold

You’re mine now!

- scPPX, a yeast-derived exopolyphosphatase49
- Alkaline phosphatases 0
- PPXbd, the polyP-binding domain from

E. coli exopolyphosphatase“s"“”51
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{% | - Universal Heparin Reversal Agents
(UHRAs)*®

Some researchers are incorporating polyP into novel hemostatic agents to control bleeding. Also, because polyP
enhances, but is not essential for, coagulation, it represents an attractive target for thrombosis prevention and treatment.
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